
Homotopietheorie Seminar:
Simplicial homotopy theory

Markus Hausmann and Sven van Nigtevecht

Simplicial sets offer a combinatorial way to deal with the homotopy theory of topological
spaces. In addition, they provide a playground that includes other phenomena as well,
such as categories. This seminar will cover the basics of this theory, focussing on the
homotopy theory of spaces. Our main sources include [Gro25], [HM22], [Sch26]; parts of
[Ker, Tag 00SY] may also be useful.

Each talk should be at most 80 minutes long, accounting for questions and comments. It
is up to each presenter to choose exactly what should be presented from topic, although
the main theorems and definitions should always be given. Make sure to include plenty
of examples in your talk, even if not explicitly asked for in the abstracts below.

1. (13.04.2026) Overview talk by Sven.

2. (Vishal Kannan, 20.04.2026) Products of simplicial sets. Introduce the notion of a
simplicial homotopy, adding the warning that it is not an equivalence relation in general.
The goal of this talk is to show that geometric realisation preserves products, from which
we can deduce that it sends homotopies of topological spaces to simplicial homotopies.
First deal with the case of products of standard simplices ∆[n]× ∆[k], decomposing it
into standard simplices through the use of shuffles. Next, briefly introduce the notion of a
convenient category of topological spaces. Show that geometric realisation |−| : sSet →
Top preserves products when working with a convenient category of topological spaces
as the target. See [HM22, Section 2.5].

3. (Vinzenz Hochstrasser, 27.04.2026) Intermezzo: limits and colimits. Cover [Tae23,
Chapter 9], including at least the following. Define the notion of a limit and a colimit in
a category, and discuss the specific examples of (co)products, pullbacks, and pushouts.
Show that the category Set of sets has all (small) limits and colimits, and give the formula
for computing these. Likewise, show that the category Ab of abelian groups has all limits
and colimits. Discuss the notion of a functor preserving (co)limits. As an example, show
that the forgetful functor Set → Ab preserves all limits, but not all colimits. Introduce
the notion of adjoint functors. Prove that left adjoint functors preserve colimits, and that
right adjoint functors preserve limits. Finally, discuss the notion of an equivalence of
categories; see [Tae23, Section 6.2].
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4. (Elias Honkomp, 04.05.2026) Simplicial sets as presheaves. Cover [HM22, Sec-
tion 2.4], including at least the following. For a small category C, introduce the presheaf
category PSh(C), showing it has all limits and colimits. Define the Yoneda embedding,
and prove the Yoneda lemma, and conclude that the Yoneda embedding is a fully faithful
functor; see, e.g., [Gro25, Section 1.3]. Next, discuss the universal property of a presheaf
category: if D is a category admitting all (small) colimits, then colimit-preserving functors
PSh(C) → D correspond to functors C → D. Prove that such colimit-preserving functors
PSh(C) → D always admit a right adjoint D → PSh(C). Specialise all of this to the case of
simplicial sets, using that sSet = PSh(∆); in particular, show that the Yoneda lemma says
that HomsSet(∆[n], X) ∼= Xn for all n. Furthermore, show how this retrieves the definition
of geometric realisation, and moreover results in an adjunction

|−| : sSet ⇄ Top : Sing

between the geometric realisation and the singular complex.

5. (Jules Hamou, 11.05.2026) Nerves of categories. Define the nerve functor N: Cat →
sSet, and prove it is fully faithful and admits a left adjoint; see [HM22, Section 2.4].
Describe the left adjoint τ. If C is a small category, define its classifying space BC as the
geometric realisation |N(C)|. Show that a natural transformation F → G between two
functors F, G : C → D induces a simplicial homotopy between N(F) and N(G). Show
that an adjunction C ⇄ D induces a homotopy equivalence BC ≃ BD; in particular, if C
has an initial or terminal object, then BC is contractible. If G is a (discrete) group, define
BG as the classifying space of the category with one object ∗ whose automorphisms are
given by G. Define the space EG as the classifying space of the category ẼG whose objects
are given by G, and where there is a unique morphism between every two objects. Show
that EG is contractible and carries a continuous G-action, that EG/G ≃ BG, and that
EG → BG is a universal cover. In particular, BG is an Eilenberg–MacLane space with
fundamental group isomorphic to G.

6. (Longxiao Li, 18.05.2026) Kan complexes. Define the notion of a Kan complex. Show
that ∆[n] is never a Kan complex for n > 0, that Sing X is a Kan complex for every
topological space X, and that the nerve N(C) of a category C is a Kan complex if and
only if C is a groupoid. Define the notions of a Kan fibration and a trivial Kan fibration,
showing that these properties are preserved under pullbacks. Dually, discuss the notion
of a saturated class for a class of morphisms ([HM22, Section 5.3]), and use this to define
the notion of an anodyne map of simplicial sets. Show that the saturated closure of all
boundary inclusions { ∂∆[n] → ∆[n] }n is equal to the collection of all injections. Show
that if A ⊆ B and C ⊆ D are inclusions one of which is anodyne, then the induced map
A × D ∪ B × C → B × D is also anodyne. Finally, use this to conclude two things: that
Kan complexes satisfy a homotopy extension property, and that simplicial homotopy is
an equivalence relation for maps into a Kan complex. See [Ker, Tag 00T0 and Tag 00UG]
and [HM22, Sections 5.1–5.4].

2

https://kerodon.net/tag/00T0
https://kerodon.net/tag/00UG


No talk on 25.05.2026 due to Pentecost.

7. (Dimitrios Kalpakidis, 01.06.2026) Simplicial homotopy groups. Cover [Ker, Tag 00V2],
including at least the following. Introduce the notion of homotopy groups of pointed
Kan complexes. Show that π0(X, x0) can be identified with the coequaliser of X1 ⇒ X0.
Show that πn(X, x0) carries a natural group structure for n ⩾ 1, which is abelian if n ⩾ 2.
If (X, x0) is a pointed topological space, identify πn(Sing X, x0) with πn(X, x0). Define
the notion of a weak homotopy equivalence of simplicial sets, and show that a weak
homotopy equivalence of simplicial sets is one whose geometric realisation is a weak
homotopy equivalence in the usual sense. Show that the properties we expect from
ordinary homotopy groups hold true in the simplicial context too; in particular, a Kan
fibration leads to a long exact sequence in homotopy.

8. (Aleksandre Tchagalidze, 08.06.2026) Simplicial vs. topological I. This is the first of
two lectures to compare the homotopy theories of simplicial sets and topological spaces.
The goal of this lecture is to show that for every simplicial set X, the unit X → Sing|X|
induces an isomorphism on A-homology for all abelian groups A. See [Sch26, Chapter 5].

9. (Manuel Eymar Carballo, 15.06.2026) Simplicial vs. topological II. Following [Sch26,
Chapter 6], show that for every topological space X, the counit |Sing X| → X is a weak
homotopy equivalence. In particular, explain how this yields a natural CW approximation
for arbitrary topological spaces. Finally, explain how it follows from the triangle identities
that the unit X → Sing|X| is a weak equivalence too; see [Sch26, Proposition 7.6].

10. (Florian Meister, 22.06.2026) The homotopy category of spaces. In the previous
two talks, we showed that the unit and counit of the adjunction |−| : sSet ⇄ Top : Sing
are weak equivalences. The goal of this talk is to deduce from this that the adjunction
becomes an equivalence of categories after inverting the weak equivalences on both sides.
(The resulting category is known as the homotopy category of spaces.) For this, introduce the
notion of a (weak) localisation of a category at a class of morphisms, briefly mentioning
the set-theoretic issues that can arise in general. Deduce from the previous lectures that
the adjunction descends to an equivalence Top[w.e.−1] ≃ sSet[w.e.−1]. After this, show
that these localisations identify with Ho(CW) and Ho(Kan), the homotopy categories of
CW complexes and of Kan complexes, respectively. See [Sch26, Chapter 7].

11. (Carlos Delgado Ordiales, 29.06.2026) Kan’s Ex∞-functor. Previously, we showed
that for every simplicial set X, the unit map X → Sing|X| is an anodyne map to a Kan
complex, i.e., Sing|X| is a functorial replacement of X by a Kan complex. The goal of
this lecture is to give a different such replacement (Kan’s Ex∞-functor), which is much
more efficient and does not use topological spaces in its construction. Discuss simplicial
subdivision and how one defines Ex in terms of this, and how Ex∞ is obtained by applying
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this ‘infinitely many times’. Show that Ex∞X is a Kan complex for every X, and that the
map X → Ex∞X is anodyne, and is an isomorphism on 0-simplices. Use this construction
to prove that an injective map of simplicial sets is a weak homotopy equivalence if and
only if it is anodyne. See [Ker, Tag 00XF], or the original [Kan57] (note that Kan’s original
paper uses slightly different terminology in various places).

12. (Felix Le, 06.07.2026) Brown’s finite computability. Let (X, x0) be a finite CW
complex. Brown [Bro57] showed, using simplicial methods, that for every n, there is a
finite algorithm to determine πn(X, x0) (though it is not practical for computation). To
explain this algorithm, first outline Serre’s method of computing homotopy groups using
the Hurewicz Theorem and Eilenberg–MacLane spaces. Moving to the simplicial world,
define the Kan complex K(A, n) for A an abelian group and n ⩾ 0, as well as E(A, n).
Explain the simplicial Postnikov construction, and outline how Brown’s argument goes.

13. (Niklas Arppe, 13.07.2026) The Dold–Kan correspondence. The Dold–Kan corres-
pondence asserts that there is an equivalence of categories between simplicial abelian
groups and (nonnegatively graded) chain complexes of abelian groups. The functor in
one direction implementing this equivalence is the normalised chain complex. Define this
in terms of the Moore complex, noting how these complexes are quasi-isomorphic. Also
define the functor in the other direction, and show that these are inverses to each other.
See [Gro25, Sections 3.2 and 3.3] and [Mat11, Section 2].
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